skip to main content


Search for: All records

Creators/Authors contains: "Rao, Mukund P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Instrumental records indicate a century-long trend towards drying over western North America and wetting over eastern North America. A continuation of these trends into the future would have significant hydroclimatic and socioeconomic consequences in both the semi-arid Southwest and humid East. Using tree-ring reconstructions and hydrologic simulations of summer soil moisture, we evaluate and contextualize the modern summer aridity gradient within its natural range of variability established over the past 600 years and evaluate the effects of observed and anthropogenic precipitation, temperature, and humidity trends. The 2001–2020 positive (wet east-dry west) aridity gradient was larger than any 20 year period since 1400 CE, preceded by the most negative (wet west-dry east) aridity gradient during 1976–1995, leading to a strong multi-decade reversal in aridity gradient anomalies that was rivaled only by a similar event in the late-16th century. The 2001–2020 aridity gradient was dominated by long-term summer precipitation increases in the Midwest and Northeast, with smaller contributions from more warming in the West than the East and spring precipitation decreases in the Southwest. Multi-model mean climate simulations from Coupled Model Intercomparison Project 6 experiments suggest anthropogenic climate trends should not have strongly affected the aridity gradient thus far. However, there is high uncertainty due to inter-model disagreement on anthropogenic precipitation trends. The recent strengthening of the observed aridity gradient, its increasing dependence on precipitation variability, and disagreement in modeled anthropogenic precipitation trends reveal significant uncertainties in how water resource availability will change across North America in the coming decades.

     
    more » « less
  2. Abstract

    The high‐mountain system, a storehouse of major waterways that support important ecosystem services to about 1.5 billion people in the Himalaya, is facing unprecedented challenges due to climate change during the 21st century. Intensified floods, accelerating glacial retreat, rapid permafrost degradation, and prolonged droughts are altering the natural hydrological balances and generating unpredictable spatial and temporal distributions of water availability. Anthropogenic activities are adding further pressure onto Himalayan waterways. The fundamental question of waterway management in this region is therefore how this hydro‐meteorological transformation, caused by climate change and anthropogenic perturbations, can be tackled to find avenues for sustainability. This requires a framework that can diagnose threats at a range of spatial and temporal scales and provide recommendations for strong adaptive measures for sustainable future waterways. This focus paper assesses the current literature base to bring together our understanding of how recent climatic changes have threatened waterways in the Asian Himalayas, how society has been responding to rapidly changing waterway conditions, and what adaptive options are available for the region. The study finds that Himalayan waterways are crucial in protecting nature and society. The implementation of integrated waterways management measures, the rapid advancement of waterway infrastructure technologies, and the improved governance of waterways are more critical than ever.

    This article is categorized under:

    Engineering Water > Sustainable Engineering of Water

     
    more » « less
  3. Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

     
    more » « less